Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36900162

RESUMO

Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and therapies of CRC. Therefore, an attempt was made in this study to explore CRC-related CGs for early diagnosis, prognosis, and therapies. At first, we identified 252 common differentially expressed genes (cDEGs) between CRC and control samples based on three gene-expression datasets. Then, we identified ten cDEGs (AURKA, TOP2A, CDK1, PTTG1, CDKN3, CDC20, MAD2L1, CKS2, MELK, and TPX2) as the CGs, highlighting their mechanisms in CRC progression. The enrichment analysis of CGs with GO terms and KEGG pathways revealed some crucial biological processes, molecular functions, and signaling pathways that are associated with CRC progression. The survival probability curves and box-plot analyses with the expressions of CGs in different stages of CRC indicated their strong prognostic performance from the earlier stage of the disease. Then, we detected CGs-guided seven candidate drugs (Manzamine A, Cardidigin, Staurosporine, Sitosterol, Benzo[a]pyrene, Nocardiopsis sp., and Riccardin D) by molecular docking. Finally, the binding stability of four top-ranked complexes (TPX2 vs. Manzamine A, CDC20 vs. Cardidigin, MELK vs. Staurosporine, and CDK1 vs. Riccardin D) was investigated by using 100 ns molecular dynamics simulation studies, and their stable performance was observed. Therefore, the output of this study may play a vital role in developing a proper treatment plan at the earlier stages of CRC.

2.
Comput Biol Med ; 152: 106411, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502691

RESUMO

Pancreatic cancer (PC) is one of the leading causes of cancer-related death globally. So, identification of potential molecular signatures is required for diagnosis, prognosis, and therapies of PC. In this study, we detected 71 common differentially expressed genes (cDEGs) between PC and control samples from four microarray gene-expression datasets (GSE15471, GSE16515, GSE71989, and GSE22780) by using robust statistical and machine learning approaches, since microarray gene-expression datasets are often contaminated by outliers due to several steps involved in the data generating processes. Then we detected 8 cDEGs (ADAM10, COL1A2, FN1, P4HB, ITGB1, ITGB5, ANXA2, and MYOF) as the PC-causing key genes (KGs) by the protein-protein interaction (PPI) network analysis. We validated the expression patterns of KGs between case and control samples by box plot analysis with the TCGA and GTEx databases. The proposed KGs showed high prognostic power with the random forest (RF) based prediction model and Kaplan-Meier-based survival probability curve. The KGs regulatory network analysis detected few transcriptional and post-transcriptional regulators for KGs. The cDEGs-set enrichment analysis revealed some crucial PC-causing molecular functions, biological processes, cellular components, and pathways that are associated with KGs. Finally, we suggested KGs-guided five repurposable drug molecules (Linsitinib, CX5461, Irinotecan, Timosaponin AIII, and Olaparib) and a new molecule (NVP-BHG712) against PC by molecular docking. The stability of the top three protein-ligand complexes was confirmed by molecular dynamic (MD) simulation studies. The cross-validation and some literature reviews also supported our findings. Therefore, the finding of this study might be useful resources to the researchers and medical doctors for diagnosis, prognosis and therapies of PC by the wet-lab validation.


Assuntos
Neoplasias Pancreáticas , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais/genética , Genômica , Regulação Neoplásica da Expressão Gênica , Biologia Computacional , Neoplasias Pancreáticas
3.
Hum Genome Var ; 9(1): 31, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075891

RESUMO

Here we report a consanguineous Pakistani family with multiple affected individuals with autosomal recessive congenital cataract (arCC). Exclusion analysis established linkage to chromosome 22q, and Sanger sequencing coupled with PCR-based chromosome walking identified a large homozygous genomic deletion. Our data suggest that this deletion leads to CRYBB2-CRYBB2P1 fusion, consisting of exons 1-5 of CRYBB2 and exon 6 of CRYBB2P1, the latter of which harbors the c.463 C > T (p.Gln155*) mutation, and is responsible for arCC.

4.
Autophagy ; 18(9): 2198-2215, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35343376

RESUMO

FYCO1 (FYVE and coiled-coil domain containing 1) is an adaptor protein, expressed ubiquitously and required for microtubule-dependent, plus-end-directed transport of macroautophagic/autophagic vesicles. We have previously shown that loss-of-function mutations in FYCO1 cause cataracts with no other ocular and/or extra-ocular phenotype. Here, we show fyco1 homozygous knockout (fyco1-/-) mice recapitulate the cataract phenotype consistent with a critical role of FYCO1 and autophagy in lens morphogenesis. Transcriptome coupled with proteome and metabolome profiling identified many autophagy-associated genes, proteins, and lipids respectively perturbed in fyco1-/- mice lenses. Flow cytometry of FYCO1 (c.2206C>T) knock-in (KI) human lens epithelial cells revealed a decrease in autophagic flux and autophagic vesicles resulting from the loss of FYCO1. Transmission electron microscopy showed cellular organelles accumulated in FYCO1 (c.2206C>T) KI lens-like organoid structures and in fyco1-/- mice lenses. In summary, our data confirm the loss of FYCO1 function results in a diminished autophagic flux, impaired organelle removal, and cataractogenesis.Abbreviations: CC: congenital cataracts; DE: differentially expressed; ER: endoplasmic reticulum; FYCO1: FYVE and coiled-coil domain containing 1; hESC: human embryonic stem cell; KI: knock-in; OFZ: organelle-free zone; qRT-PCR: quantitative real-time PCR; PE: phosphatidylethanolamine; RNA-Seq: RNA sequencing; SD: standard deviation; sgRNA: single guide RNA; shRNA: shorthairpin RNA; TEM: transmission electron microscopy; WT: wild type.


Assuntos
Catarata , Cristalino , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Autofagia , Catarata/genética , Catarata/metabolismo , Diferenciação Celular , Retículo Endoplasmático/metabolismo , Humanos , Cristalino/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Fatores de Transcrição/metabolismo
5.
Microbiol Resour Announc ; 10(27): e0052421, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236224

RESUMO

This study reports the coding-complete genome sequence, with variant identifications and phylogenetic analysis, of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) P.1 variant (20J/501Y.V3), obtained from an oropharyngeal swab specimen from a female Bangladeshi patient diagnosed with coronavirus disease 2019 (COVID-19) with no travel history.

6.
Hum Genet ; 140(4): 649-666, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389129

RESUMO

Peroxisomes, single-membrane intracellular organelles, play an important role in various metabolic pathways. The translocation of proteins from the cytosol to peroxisomes depends on peroxisome import receptor proteins and defects in peroxisome transport result in a wide spectrum of peroxisomal disorders. Here, we report a large consanguineous family with autosomal recessive congenital cataracts and developmental defects. Genome-wide linkage analysis localized the critical interval to chromosome 12p with a maximum two-point LOD score of 4.2 (θ = 0). Next-generation exome sequencing identified a novel homozygous missense variant (c.653 T > C; p.F218S) in peroxisomal biogenesis factor 5 (PEX5), a peroxisome import receptor protein. This missense mutation was confirmed by bidirectional Sanger sequencing. It segregated with the disease phenotype in the family and was absent in ethnically matched control chromosomes. The lens-specific knockout mice of Pex5 recapitulated the cataractous phenotype. In vitro import assays revealed a normal capacity of the mutant PEX5 to enter the peroxisomal Docking/Translocation Module (DTM) in the presence of peroxisome targeting signal 1 (PTS1) cargo protein, be monoubiquitinated and exported back into the cytosol. Importantly, the mutant PEX5 protein was unable to form a stable trimeric complex with peroxisomal biogenesis factor 7 (PEX7) and a peroxisome targeting signal 2 (PTS2) cargo protein and, therefore, failed to promote the import of PTS2 cargo proteins into peroxisomes. In conclusion, we report a novel missense mutation in PEX5 responsible for the defective import of PTS2 cargo proteins into peroxisomes resulting in congenital cataracts and developmental defects.


Assuntos
Catarata/genética , Mutação de Sentido Incorreto , Sinais de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo , Catarata/congênito , Catarata/metabolismo , Cromossomos Humanos Par 12 , Consanguinidade , Feminino , Ligação Genética , Humanos , Cristalino/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Proteína Sequestossoma-1/metabolismo , Sequenciamento do Exoma
7.
Stem Cell Res ; 46: 101813, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474394

RESUMO

Here, we report proteome profiling of peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cell (iPSC)-derived, lens-like organoids termed lentoid bodies at two differentiation time points. A small aliquot of the blood sample was ascertained to collect PBMCs that were reprogrammed to iPSCs. The PBMC-originated, iPSCs were differentiated to lentoid bodies employing the "fried egg" method. Quantitative real-time PCR (qRT-PCR) analysis revealed increased expression levels of lens-associated markers in lentoid bodies while transmission electron microscopy identified closely packed lens epithelial- and differentiating fiber-like cells in lentoid bodies. Total cellular protein was extracted from lentoid bodies at differentiation day 25 and mass spectrometry identified a total of 9,473 proteins. The low counts of crystallin proteins at differentiation day 25 prompted us to re-examine the proteome at differentiation day 35 as we reasoned that 10 additional days of differentiation will increase the crystallin count. However, we did not detect any substantial increase in crystallin protein counts at differentiation day 35. In conclusion, we report generation and proteome profiles of PBMC-originated, iPSC-derived lentoid bodies at multiple differentiation time points.


Assuntos
Cristalinas , Células-Tronco Pluripotentes Induzidas , Cristalino , Diferenciação Celular , Leucócitos Mononucleares , Proteoma
8.
Hum Genome Var ; 7: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411380

RESUMO

This study was conducted to identify the genetic basis of retinal dystrophies in consanguineous Pakistani families. We recruited two families with retinitis pigmentosa (RP) displaying visual difficulties, including nyctalopia and constricted visual fields. Linkage analysis and Sanger sequencing resulted in the identification of a previously reported nonsense mutation, c.847C > T, in exon 5 of CERKL in one family and a novel four-base pair deletion in exon 4 of RP1, c.delAGAA4218_4221, leading to premature protein termination in the second family. Here, we report two RP-causing mutations extending the genetic heterogeneity of the disease.

9.
Mol Vis ; 26: 14-25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165823

RESUMO

Purpose: Primary congenital glaucoma (PCG) is a genetically heterogeneous disorder caused by developmental defects in the anterior chamber and trabecular meshwork. This disease is an important cause of childhood blindness. In this study, we aim to identify the genetic determinants of PCG in three consanguineous families of Pakistani descent. Methods: Affected members of all three families underwent detailed ophthalmological examination including slit-lamp biomicroscopy. Blood samples were collected from affected and healthy members of all three families, and genomic DNA was extracted. Linkage analysis was performed for the known or reported loci of PCG to localize the disease interval, and logarithm of odds (LOD) scores were calculated. All protein-coding exons of the candidate gene, latent transforming growth factor-beta binding protein 2 (LTBP2), were bidirectionally sequenced to identify the disease-causing mutation. Results: Short tandem repeat (STR) marker-based linkage analysis localized the critical interval to chromosome 14q with a maximum two-point LOD score of 2.86 (PKGL076), 2.8 (PKGL015), and 2.92 (PKGL042). Bidirectional Sanger sequencing of LTBP2 revealed three novel pathogenic variants, i.e., c.3028G>A (p.Asp1010Asn), c.3427delC (p.Gln1143Argfs*35), and c.5270G>A (p.Cys1757Tyr) in PKGL076, PKGL015, and PKGL042, respectively. All three mutations segregated with the disease phenotype in their respective families and were absent in 200 ethnically matched normal chromosomes. Conclusions: We identified three novel mutations, p.D1010N, p.Q1143Rfs*35, and p.C1757Y, in LTBP2 responsible for PCG.


Assuntos
Cromossomos Humanos Par 14/genética , Glaucoma/genética , Proteínas de Ligação a TGF-beta Latente/genética , Adolescente , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Evolução Molecular , Éxons , Feminino , Ligação Genética , Glaucoma/congênito , Glaucoma/fisiopatologia , Humanos , Proteínas de Ligação a TGF-beta Latente/sangue , Masculino , Mutação , Paquistão , Linhagem , Análise de Sequência de DNA
10.
Sci Rep ; 9(1): 18552, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811247

RESUMO

The ocular lens serves as an excellent system to investigate the intricate details of development and differentiation. Generation of lentoid bodies or lens-like structures using pluripotent stem cells is important for understanding the processes critical for lens morphogenesis and the mechanism of cataractogenesis. We previously reported the generation of peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cells (iPSCs). Here, we report generation of lentoid bodies from human embryonic stem cells (hESCs) and (PBMC)-originated, iPSCs employing the "fried egg" method with brief modifications. The ultrastructure analysis of hESC- and iPSC-derived lentoid bodies identified closely packed lens epithelial- and differentiating fiber-like cells. In addition, we performed RNA sequencing (RNA-Seq) based transcriptome profiling of hESC- and iPSC-derived lentoid bodies at differentiation day 25. Next-generation RNA sequencing (RNA-Seq) of hESC- and iPSC-derived lentoid bodies detected expression (≥0.659 RPKM) of 13,975 and 14,003 genes, respectively. Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies revealed 13,563 (>96%) genes common in both datasets. Among the genes common in both transcriptome datasets, 12,856 (~95%) exhibited a quantitatively similar expression profile. Next, we compared the mouse lens epithelial and fiber cell transcriptomes with hESC- and iPSC-derived lentoid bodies transcriptomes and identified > 96% overlap with lentoid body transcriptomes. In conclusion, we report first-time comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies at differentiation day 25.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/crescimento & desenvolvimento , Transcriptoma/fisiologia , Idoso , Linhagem Celular , Reprogramação Celular/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Cristalino/citologia , Leucócitos Mononucleares/fisiologia , Masculino , Cultura Primária de Células , RNA-Seq
11.
Sci Data ; 5: 180174, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204152

RESUMO

Here we report next-generation based whole genome sequencing of two individuals (H1 and H2) from a family of Pakistani descent. The genomic DNA was used to prepare paired-end libraries for whole-genome sequencing. Deep sequencing yielded 706.49 and 778.12 million mapped reads corresponding to 70.64 and 77.81 Gb sequence data and 23× and 25× average coverage for H1 and H2, respectively. Notably, a total of 448,544 and 470,683 novel variants, not present in the single nucleotide polymorphism database (dbSNP), were identified in H1 and H2, respectively. Comparative analysis identified 2,415,852 variants common in both genomes including 240,181 variants absent in the dbSNP. Principal component analysis linked the ancestry of both genomes with South Asian populations. In conclusion, we report whole genome sequences of two individuals from a family of Pakistani descent.


Assuntos
Povo Asiático/genética , Genoma Humano , Sequenciamento Completo do Genoma , Família , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paquistão , Polimorfismo de Nucleotídeo Único
12.
Exp Eye Res ; 176: 252-257, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196069

RESUMO

The corneal endothelium (CE), a monolayer of hexagonal cells constitutes the innermost layer of the cornea that is critical in maintaining clarity by mediating hydration through barrier and pump functions. Corneal endothelial cells (CECs) have limited proliferative potential and therefore generation of CECs has been undertaken by many groups. We previously reported generation of CECs from peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cells (iPSCs). In here, we extend our analysis through next-generation seqeuncing based transcriptome profiling of H9 human embryonic stem cell (hESC)- and human PBMC-originated, iPSC-derived CECs. The differentiating CECs on day 20 (D20) exhibited a tightly packed hexagonal/polygonal shape expressing zona occludens-1 (ZO-1) and N-cadherin at the cell boundaries. Next-generation RNA sequencing of hESC- and iPSC-derived CECs detected expression (≥0.659 RPKM) of 13,546 and 13,536 genes, respectively. Comparative transcriptome analysis of hESC- and iPSC-derived CECs revealed 13,208 (>96%) genes common in both transcriptomes. Among the 13,208 genes common in these transcriptomes, 12,580 (>95%) exhibited a quantitatively similar expression. To the best of our knowledge, this is the first report presenting comparative transcriptome analysis of hESC- and iPSC-derived CECs.


Assuntos
Endotélio Corneano/citologia , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Idoso , Biomarcadores/metabolismo , Caderinas/metabolismo , Diferenciação Celular , Endotélio Corneano/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Microscopia de Contraste de Fase , Transcriptoma , Proteína da Zônula de Oclusão-1/metabolismo
13.
PLoS Genet ; 14(8): e1007504, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157172

RESUMO

We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells.


Assuntos
Canais de Cloreto/genética , Mutação de Sentido Incorreto , Retinite Pigmentosa/genética , Animais , Povo Asiático/genética , Linhagem Celular , Canais de Cloreto/metabolismo , Citoplasma/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células HEK293 , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Paquistão , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinite Pigmentosa/diagnóstico , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Sci Rep ; 8(1): 11162, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042402

RESUMO

We previously investigated the transcriptome and proteome profiles of the murine ocular lens at six developmental time points including two embryonic (E15 and E18) and four postnatal time points (P0, P3, P6, and P9). Here, we extend our analyses to identify novel transcripts and peptides in developing  mouse lens. We identified a total of 9,707 novel transcripts and 325 novel fusion genes in developing mouse lens. Additionally, we identified 13,281 novel alternative splicing (AS) events in mouse lens including 6,990 exon skipping (ES), 2,447 alternative 3' splice site (A3SS), 1,900 alternative 5' splice site (A5SS), 1,771 mutually exclusive exons (MXE), and 173 intron retention (IR). Finally, we integrated our OMIC (Transcriptome and Proteome) datasets identifying 20 novel peptides in mouse lens. All 20 peptides were validated through matching MS/MS spectra of synthetic peptides. To the best of our knowledge, this is the first report integrating OMIC datasets to identify novel peptides in developing murine lens.


Assuntos
Processamento Alternativo/genética , Cristalino/embriologia , Cristalino/crescimento & desenvolvimento , Organogênese/genética , Peptídeos/genética , Proteoma/genética , Transcriptoma/genética , Algoritmos , Animais , Cromatografia Líquida , Bases de Dados Genéticas , Éxons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons/genética , Camundongos , Gravidez , Sítios de Splice de RNA/genética , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
15.
Invest Ophthalmol Vis Sci ; 59(1): 100-107, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332127

RESUMO

Purpose: We previously completed a comprehensive profile of the mouse lens transcriptome. Here, we investigate the proteome of the mouse lens through mass spectrometry-based protein sequencing at the same embryonic and postnatal time points. Methods: We extracted mouse lenses at embryonic day 15 (E15) and 18 (E18) and postnatal day 0 (P0), 3 (P3), 6 (P6), and 9 (P9). The lenses from each time point were preserved in three distinct pools to serve as biological replicates for each developmental stage. The total cellular protein was extracted from the lens, digested with trypsin, and labeled with isobaric tandem mass tags (TMT) for three independent TMT experiments. Results: A total of 5404 proteins were identified in the mouse ocular lens in at least one TMT set, 4244 in two, and 3155 were present in all three TMT sets. The majority of the proteins exhibited steady expression at all six developmental time points; nevertheless, we identified 39 proteins that exhibited an 8-fold differential (higher or lower) expression during the developmental time course compared to their respective levels at E15. The lens proteome is composed of diverse proteins that have distinct biological properties and functional characteristics, including proteins associated with cataractogenesis and autophagy. Conclusions: We have established a comprehensive profile of the developing murine lens proteome. This repository will be helpful in identifying critical components of lens development and processes essential for the maintenance of its transparency.


Assuntos
Proteínas do Olho/genética , Perfilação da Expressão Gênica/métodos , Cristalino/metabolismo , Espectrometria de Massas/métodos , Proteoma/genética , RNA Mensageiro/genética , Animais , Animais Recém-Nascidos , Proteínas do Olho/metabolismo , Camundongos , Modelos Animais , Proteoma/metabolismo
18.
Hum Genome Var ; 3: 16036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917291

RESUMO

To delineate the genetic determinants associated with retinitis pigmentosa (RP), a hereditary retinal disorder, we recruited four large families manifesting cardinal symptoms of RP. We localized these families to regions on the human genome harboring the α and ß subunits of phosphodiesterase 6 and identified mutations that were absent in control chromosomes. Our data suggest that mutations in PDE6A and PDE6B are responsible for the retinal phenotype in these families.

19.
PLoS One ; 11(12): e0167562, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936067

RESUMO

PURPOSE: The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. METHODS: All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. RESULTS: Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. CONCLUSION: Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.


Assuntos
Catarata/genética , N-Acetilexosaminiltransferases/genética , Deleção de Sequência , Animais , Catarata/congênito , Criança , Pré-Escolar , Consanguinidade , Feminino , Ligação Genética , Loci Gênicos , Humanos , Lactente , Masculino , Camundongos , Repetições de Microssatélites , N-Acetilglucosaminiltransferases/genética , Linhagem
20.
PLoS One ; 11(11): e0162620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27814360

RESUMO

PURPOSE: To identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC) in a consanguineous family. METHODS: All family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2), was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model. RESULTS: Ophthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD) score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D) in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19) compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15 (E15) increased after birth to a level that was sustained through the postnatal time points. CONCLUSION: A novel missense mutation in LIM2 is responsible for autosomal recessive congenital cataracts.


Assuntos
Catarata/genética , Proteínas do Olho/genética , Genes Recessivos/genética , Ligação Genética/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Animais , Consanguinidade , Feminino , Hereditariedade/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...